Introduction to VASP

Runxue Yu University of Michigan

Outlines

- Introduction
- Input files
 - INCAR
 - POTCAR
 - POSCAR
 - KPOINTS
- Output files
 - OUTCAR and CHGCAR
 - DOSCAR and EIGENVAL
 - PROCAR
- Examples
 - Si
 - NiO and MnO
 - NdNiO₂

Introduction

- Perform *ab initio* quantum-mechanical molecular dynamics (MD) simulations.
- It is based on the local-density approximation with the free energy as variational quantity and an exact evaluation of the instantaneous electronic ground state at each MD time step.
- The interaction between ions and electrons is described by ultra-soft Vanderbilt pseudopotentials (US-PP) or by the projector-augmented wave (PAW) method and a plane wave basis set.
- Highlights:
 - VASP provides well-tested pseudopotentials for almost every element.
 - Algorithms are efficient and stable.
 - VASP includes a full featured symmetry code which determines the symmetry of arbitrary configurations automatically.
 - VASP can conduct various calculation.
 - VASP runs equally well on super-scalar processors, vector computers and parallel computers.

Input Files

Main input files:

- INCAR: determines 'what to do and how to do' and contains a relatively large number of parameters.
- POTCAR: contains the pseudopotential for each atmoic species used in the calculation.
- POSCAR: contains the lattice geometry and the ionic positions.
- KPOINTS: create the k-point grid with k-point coordinates and weights or the mesh size.

INCAR

Frequently used parameters:

- SYSTEM: notation of system
- ISTART: restart from the previous calculation or not
- ICHARG: initial guess for charge density
 - ICHARG = 0: Calculate charge density from initial orbitals
 - ICHARG = 2: Take superposition of atomic charge densities
 - ICHARG = 11: To obtain the eigenvalues or the DOS for a given charge density read from CHGCAR (non-self consistent calculation).
- ENCUT: cut-off energy for plane wave basis set in eV.
- ISMEAR, SIGMA: parameters for smearing.
 - ISMEAR = -1 (Fermi-smearing); 0 (Gaussian smearing), -2 (partial occupancies from WAVEVAR), -5 (tetrahedron method with Blochl corrections)
 - SIGMA: determines the width of the smearing in eV for the finite temperature LDA.

SYSTEM =	Si
ISTART =	0
ICHARG =	2
ENCUT = 2	240
ISMEAR =	0
SIGMA = 0).1

INCAR

- ISPIN = 1 (non spin polarized); 2 (spin polarized)
- MAGMOM: specifies the initial magnetic moment for each atom.
- EDIFF: accuracy for electronic minimization
- PREC:
- NELM: the maximum number of electronic self-consistency steps
- AMIX, BMIX, LMAXMIX: charge density mixer
 - LMAXMIX: which *l* quantum number are passed through mixer (for s and p, set to 2; for d, set to 4; for f, set to 6)
- LORBIT: create output files at certain level
 - LORBIT = 11 (work for PAW method and produce DOSCAR and PROCAR)
- IBRION: determines how the ions are updated and moved
 - IBRION = 2: conjugate gradient algorithm (recommended for difficult relaxation problem)

SYSTEM = NiO
ISTART = 0
ISPIN = 2
MAGMOM = 2.0 -2.0 2*0
ENMAX = 250.0
EDIFF = 1E-3
ISMEAR = -5
AMIX = 0.2
BMIX = 0.00001
AMIX_MAG = 0.8
BMIX_MAG = 0.00001
LORBIT = 11

POTCAR

- The ordering corresponds to the species ordering on the POSCAR and INCAR.
- POTCAR files contains
 - Information about the atoms (mass, valence, etc.)
 - Default energy cutoff (the value of ENCUT in the INCAR file overwrites the default in the POTCAR)
- Supplied pseudopotentials
 - Methods: US-PP and PAW
 - Exchange correlation function: LDA and GGA (PW91 or PBE)
 - Semi-core states: X, X_sv (with s semi-core states), X_pv (with p semi-core states), X_d (with f semi-core states)
 - ENMAX: X, X_s, X_h (with harder pseudopotential)
- NOTES
 - Use PAW for transition metal 3d elements, lanthanides and actinides.
 - For 3d elements, recommend to use X_pv.

POSCAR

- A comment line
- A universal scaling factor ('lattice constant')
 - If this value is negative, it is interpreted as the total volume of the cell.
- Three lattice vectors defining the unit cell of the system
- The number of atoms per atomic species
 - The ordering must be consistent with the POTCAR and INCAR
- Whether the atomic positions are provided in cartesian coordinates or in direct coordinates
 - If the first character is 'C', 'c', 'K' or 'k', switch to the cartesian mode.
- The three coordinates for each atom.

8

NdNiO2 1.0 3.920000 0.000000 0.000000 0.000000 3.920000 0.000000 0.000000 0.000000 3.280000 Nd Ni O 1 1 2 direct 0.500000 0.500000 0.500000 0.000000 0.500000 0.000000 0.000000 0.500000 0.000000

Cartesian

 $\vec{R} = s \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

Direct $\vec{R} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + x_3 \vec{a}_3$

KPOINTS

- Automatic k-mesh generation
 - 0 means number of k-points = 0 -> automatic generation scheme
 - Three formats
 - Auto: fully automatic with length l
 - $N_{1} = \max(1, |\vec{l} * |\vec{b}_{1}| + 0.5)$ $N_{2} = \max(1, |\vec{l} * |\vec{b}_{2}| + 0.5)$ $\vec{k} = \vec{b}_{1} \frac{n_{1}}{N_{1}} + \vec{b}_{2} \frac{n_{2}}{N_{2}} + \vec{b}_{3} \frac{n_{3}}{N_{3}}$ $N_{3} = \max(1, |\vec{l} * |\vec{b}_{3}| + 0.5)$
 - Gamma-centered or Monkhorst-Pack case

$$\vec{k} = \vec{b}_1 \frac{n_1 + s_1}{N_1} + \vec{b}_2 \frac{n_2 + s_2}{N_2} + \vec{b}_3 \frac{n_3 + s_3}{N_3}$$
$$\vec{k} = \vec{b}_1 \frac{n_1 + s_1 + 1/2}{N_1} + \vec{b}_2 \frac{n_2 + s_2 + 1/2}{N_2} + \vec{b}_3 \frac{n_3 + s_3 + 1/2}{N_3}$$

• Cartesian or reciprocal coordinates

Automatic mesh 0 Auto 10

Automatic generation 0 Monhkorst-Pack 9 9 9 0.0 0.0 0.0

Automatic generation 0 Cartesian 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.00

KPOINTS

• Strings of k-points for band structure calculations

```
k-points along high symmetry lines
10 ! 10 intersections
Line-mode
rec
0 0 0 ! gamma
0.5 0.5 0 ! X
0.5 0.5 0 ! X
0.5 0.75 0.25 ! W
0 0 0 ! gamma
```

Output files

Main output files

- OUTCAR: contains most of the results and information for each iteration.
- CHGCAR: contains the lattice vectors, atomic coordinates, the total charge density multiplied by the volume $\rho(r) * V_{cell}$ on the fine FFT-grid.
- DOSCAR: contains the DOS and integrated DOS.
- EIGENVAL: contains the Kohn-Sham-eigenvalues for all k-points.
- PROCAR: contains the spd- and site projected wave function character of each band.

OUTCAR and CHGCAR

- Useful information in OUTCAR
 - volume of the system: grep 'volume' OUTCAR
 - total energy of the system: grep 'TOTEN' OUTCAR
 - the Fermi energy: grep 'Fermi' OUTCAR | tail -1
 - reciprocal lattice vectors: *g/reciprocal lattice vectors*
 - the difference between the free energy and the total energy: grep "EENTRO" OUTCAR
- CHGCAR
 - lattice parameters
 - NGX, NGY, NGZ

```
Au-Zn_zig
1.000000000000000
    15.000000
                 0.000000
                            0.000000
               15.000000
    0.000000
                            0.000000
    0.000000
                0.000000
                            6.600000
  1 1
Direct
0.000000 0.000000 0.000000
0.000000 0.000079 0.500000
160 160 72
0.18441120499E+05 0.17909524567E+05 0.16406959292E+05 0.14179806898E+05 0.11554638997E+05
0.88581841033E+04 0.63620171557E+04 0.42583169365E+04 0.26537018923E+04 0.15676950926E+04
```

DOSCAR and EIGENVAL

		1	Λ	1	1)						
			-+	±	~ ~ ~					0 000000		0 5000005 47
٤).:	1260	<i>0</i> 451	E+02	0.:	392000	00E-09	0.39	920000E-09	0.3280000	0E-09	0.500000E-1
1	L.(0000	900	9000	00001	E-004						
(CAI	R										
ur	ıkı	nown	sy	stem								
		39		105	4	48						
e).(0000	000	E +00	0.0	00000	00E+00	0.00	000000E+00	0.9523810	0E-02	
		1		-57.4	42844	43	-56.75	57701	1.000000	1.00000	90	
		2		-57.4	42844	43	-56.75	57701	1.000000	1.00000	90	
		3		-56.	9196(ð9	-56.62	23246	1.000000	1.00000	90	
	4	4		-32.	01697	76	-32.02	20730	1.000000	1.00000	90	
		5		-13.	5271(ð6	-13.47	4671	1.000000	1.00000	90	
	(6		-13.	09455	56	-13.10	0395	1.000000	1.00000	90	
		7		-13.	0945	56	-13.10	0395	1.000000	1.00000	90	
	1	8		-12.	62641	10	-12.60	8481	1.000000	1.00000	90	
	9	9		-12.	60516	59	-12.56	53061	1.000000	1.00000	00	

PROCAR

PROC	AR lm (decompos	ed							
# of	k-poi	nts: 10	15	# of	^F bands:	48	#	of ion	s: 4	
k-po	oint	1:	0.0000	0000 0.	0000000	0 0.000	00000	weig	ht = 0.	00952381
band	1 #	energy	-57.42	844285	# occ.	1.0000	0000			
ion	s	ру	pz	рх	dxy	dyz	dz2	dxz	dx2	tot
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	0.000	0.508	0.000	0.489	0.000	0.000	0.000	0.000	0.000	0.996
3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
tot	0.000	0.508	0.000	0.489	0.000	0.000	0.000	0.000	0.000	0.997
band	2 #	energy	-57.42	844276	# occ.	1.0000	0000			
ion	S	ру	pz	рх	dxy	dyz	dz2	dxz	dx2	tot
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	0.000	0.489	0.000	0.508	0.000	0.000	0.000	0.000	0.000	0.996
3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
tot	0.000	0.489	0.000	0.508	0.000	0.000	0.000	0.000	0.000	0.997

p4vasp: DOS and band

• p4v vasprun.xml

Example: Si

POSCAR

0.5 0.5 0.0

0.0 0.5 0.5 0.5 0.0 0.5

fcc Si:

1

000

cartesian

3.9

self-consistency calculation

INCAR	
SYSTEM = Si	
ISTART = 0	
ICHARG = 2	
ENCUT = 240	
ISMEAR = 0	
SIGMA = 0.1	

non self-consistency calculation for band structure

INCAR

KPOINTS

K-G

KPOINTS

Monkhorst Pack

11 11 11

0 0 0

k-points

0

POTCAR

PAW_PBE Si

System = fcc Si	k-points for bandstructure L-G-X-U
ICHARG = 11	line
ENCUT = 240	reciprocal 0.50000 0.50000 0.50000
1SMEAR = 0 STGMA = 0.1	0.00000 0.00000 0.00000
LORBIT = 11	0.00000 0.00000 0.00000 0.00000 0.50000 0.50000
	0.00000 0.50000 0.50000
	0.25000 0.62500 0.62500
	0.37500 0.7500 0.37500
	0.00000 0.00000 0.00000

Runxue Yu (runxueyu@umich.edu)

Example: NiO

self-consistency calculation

*0

non self-consistency calculation for band structure

POSCAR

AFM	AFM NIO						
4.17	7						
1.0	0.5	0.5					
0.5	1.0	0.5					
0.5	0.5	1.0					
22							
Carte	esiar	า					
0.0	0.0	0.0					
1.0	1.0	1.0					
0.5	0.5	0.5					
1.5	1.5	1.5					

IN	JC	CAR
SYSTEM	=	NiO
ISTART	=	0
ISPIN	=	2
MAGMOM	=	2.0 -2.0 2
		250.0
ENMAX	=	250.0
EDIFF	=	1E-3
ISMEAR	=	-5
AMIX	=	0.2
BMIX	=	0.00001
AMIX_MAG	=	0.8
BMIX_MAG	=	0.00001
LORBIT	=	11

KPOINTS

k-p Ø	oin	ts
gam	ma	
4	4	4
0	0	0

J	
	SYS

INCAR

KPOINTS

			1					
SYSTEM	=	N10		k-poir	nts al	ong hig	n :	symmetry
				15				
ISTART	=	1		Line-r	node			
ICHARG	=	11		rec				
NBANDS	=	96		0.500	0.250	0.750	Ī	W
				0.500	0.500	0.500	ļ	L
ISPIN	=	2						
MAGMOM	=	2.0 -2.0 2*0		0.500	0.500	0.500	Ī	L
				0.000	0.000	0.000	Ī	Gamma
ENMAX	=	250.0						
EDIFF	=	1E-3		0.000	0.000	0.000	Ī	Gamma
				0.500	0.000	0.500	ļ	X
ISMEAR	=	-5						
				0.500	0.000	0.500	Ī	x
AMIX	=	0.2		0.500	0.250	0.750	Ī	W
BMIX	=	0.00001						
AMIX_MAG	=	0.8		0.500	0.250	0.750	Ī	W
BMIX_MAG	=	0.00001		0.375	0.375	0.000	ļ	к
LORBIT	=	11						

Example: NiO

Example: NdNiO₂

self-consistency calculation

POSCAR

NdNiO2			
1.0			
3.920000	0.000000	0.000000	
0.000000	3.920000	0.000000	
0.000000	0.000000	3.280000	
Nd Ni O			
112			
direct			
0.500000	0.500000	0.500000	
0.000000	0.000000	0.000000	
0.000000	0.500000	0.000000	
0.500000	0.000000	0.000000	

POTCAR

PAW_PBE Nd_3

PAW_PBE Ni_pv

PAW PBE O

INCAR
ALGO = Fast
EDIFF = 0.0002
ENCUT = 520
IBRION = 2
ICHARG = 1
ISIF = 3
ISMEAR = -5
ISPIN = 2
LMAXMIX = 6
LORBIT = 11
LREAL = Auto
LWAVE = False
MAGMOM = 1*0.6 1*5.0 2*0.6
NELM = 100
NSW = 99
PREC = Accurate
SIGMA = 0.05

KPOINTS

automatic mesh							
0							
Gamma							
566							
		KP	OI	N	TS		
	k-poi	ints a	along h	nię	gn symmet		
	15						
	Line-	mode					
	rec				~		
	0.0	0.0	0.0	!	GAMMA		
	0.0	0.5	0.0	1	X		
	0.0	0.5	0.0	I	x		
	0.5	0.5	0.0		м		
	0.5	0.5	0.0		М		
	0.0	0.0	0.0		Gamma		
	0.0	0.0	0.0	!	Gamma		
	0.0	0.0	0.5	ļ	Z		
	~ ~	0.0	<u>а г</u>		7		
	0.0	0.0	0.5	-	2		
	0.0	0.5	0.5		ĸ		
	0.0	0.5	0.5	ļ	R		
	0.5	0.5	0.5		Α		
	0.5	0.5	0.5		Α		
	0 0	0 0	AF	1	7		

non self-consistency calculation for band structure

INCAR

ALGO = Fast
EDIFF = 0.0002
ENCUT = 520
IBRION = 2
ICHARG = 11
ISIF = 3
ISMEAR = 0
ISPIN = 2
LMAXMIX = 6
LORBIT = 11
LREAL = Auto
LWAVE = False
MAGMOM = $1*0.6 1*5.0 2*0.6$
NELM = 100
NSW = 0
PREC = Accurate
SIGMA = 0.05

Example: NdNiO₂

Reference

[1] Kresse G. VASP the Guide[J]. http://cms. mpi. univie. ac. at/vasp/, 2001.
[2] VASP wiki: <u>https://www.vasp.at/wiki/index.php/The_VASP_Manual</u>