
Self-energy embedding theory 
with coupled cluster Green’s 
Function solver



Quantum embedding theory

• A single framework for different correlation 
strength (U): strong correlation, Mott etc. 


• We want to use embedding theory for a 
class of materials which is not strongly 
correlated, but still requires very accurate 
modeling of correlation.

Material

 

Molecule

• Chemistry often demands accurate energetics. For a 
finite non-periodic system it is hard to reach 
convergence..


• However, small molecular systems can be a testbed 
for such theories.


• Perhaps embedding theory is better suited for 
spectra, local magnetic moments etc.

We will analyze real materials for 
various aspects of an embedding 
theory.  



• The basic framework of finite-temperature theories is provided by the Luttinger-Ward (LW) 
functional based definition of , given by 

                                   

•    

Ω
Ω = Φ[G] − Tr(logG−1) − TrΣG

ΦSEET ≈ Φtotal
non−loc + Φimp

loc − Φimp
non−loc

SEET in brief

Typically by exact solvers like ED or CT-QMCGW or GF2

Skeleton diagrams in terms of G and bare interaction V Non-local

Local

Ĥimp = ∑
u,v

F̃uvu†v + ∑
b

ϵbb†b + ∑
u,b

Vub(u†b + h . c.) +
1
2 ∑

uvtw

vuvtwu†v†wt

F̃ = Floc − Σ∞,DC

Δ(ω)



SEET vs GW+DMFT

Embedding condition: GGW+DMFT
loc = Gimp

[GSEET
loc ]−1 = [Gimp

0 ]−1 − Σ̃GW
non−loc; Σ̃GW

non−loc = ΣGW
loc − ΣGW

DC

Consideration of bare V has the advantage of using “quantum chemistry” methods as solvers.

SEET should be contrasted with GW+(E)DMFT (Kotliar, Biermann, Werner and many others) 
which uses ‘screened interaction’ W 
                         

 

ΨGW+DMFT = Ψtotal
GW + Ψimp

ED (Gimp, W) − Ψimp
GW(Gimp, W)

Hybridization: ΔSEET = [G−1]uv − [Guv]−1

ΔGW+DMFT = ΔSEET(ω) − ΣGW
loc (ω) + ΣGW

DC (ω)



 Impurity solver other than ED?

Yeh et al, Phys. Rev. B 103, 195149 (2021)

Sum of  local DOS of 
from SEET

Mn 3d + O 2p
SrMnO3

Ab initio electron correlation: Application

Total local DOS of  from SEETSrVO3

SrMnO3 SrVO3

16

One of the reasons could be the lack of 4d orbitals in the impurity.

Coupled cluster could be used as an impurity solver. 

SrVO3 C-N Yeh, S. Iskakov, D. Zgid, E. Gull, PRB 103 (19), 195149

Choice of impurities: 

Satellite near Efermi was not reproduced 



Coupled cluster method
Wave function ansatz: |Ψ⟩ = eT |Φ0⟩; T = ∑

i,a

ta
i a†

aai +
1
4 ∑

i,j,a,b

tab
ij a†

aa†
b ajai

⟨χl |H |Φ0⟩ = 0; H = e−THeTAmplitude equation:

E = ⟨Φ0 |H |Φ0⟩Energy equation:

CI expansion:  |Ψ⟩ = (T1 + T2 + . . + Tn) |Φ0⟩

-Includes all order perturbative terms of low-rank excitations.


-More compact than CI.

CC converges faster w.r.t. truncationCoupled cluster considers more classes of 
diagrams: ring, exchange (absent in GW), ladder 
(absent in GW and GF2)



Definition of CCGF
Spectral representation:

Coupled Cluster Green’s Function

using Lanczos Algorithm
Avijit Shee, Dominika Zgid

Chemistry Department, University of Michigan, Ann Arbor

1. Motivation

• Coupled cluster (CC) wave function is very accurate for
moderately correlated systems. Evaluation of Green’s
function allows us to directly obtain the spectral proper-
ties like density of states etc. For weakly correlated pe-
riodic systems, like organic semiconductors, evaluation
of Green’s Function (GF) from CC can be a potentially
successful approach.

• In QM/QM embedding theories, coupled cluster can be
used both as a solver for the embedded part or as a non-
local correlation model for the entire system. We will try
to investigate the range of applicability of CC at different
interaction strengths, which will in turn tell us its useful-
ness in embedding theories.

• For CCGF to be a very general tool it is necessary that it
can be applied for very large number of frequency points.
All previous implementations of this method were inad-
equate in that regard. Our attempt will be to avoid that
factor in scaling.

2. Definition

Let us first define one-particle Green’s function in spectral
representation:

Gpq(!) = h |a†p
1

! + µ + (H � Egr)� i⌘
aq| i+

h |ap
1

! + µ� (H � Egr) + i⌘
a
†
q| i (1)

= G
(h)
pq +G

(p)
pq (2)

where,  is the wave function of a particular state.
In coupled cluster theory ket wave function  R is given
by e

T |�0i. Since this is a non-unitary parametrization, bra
wave function  L is not adjoint of ket. However, it is possi-
ble to define a bi-orthogonal (h L| Ri = 1) ket:

h L| = h�0|(1 + ⇤)e�T
, (3)

in terms of a linear parametrization of de-excitation opera-
tors.
If we insert  L and  R as defined above into Eq. 1, we ob-
tain CC Green’s function as below after some manipulation:

G
CC
pq (!) = h�0|(1 + ⇤)a

†
p

1

! + µ +H � i⌘
aq|�0i+

h�0|(1 + ⇤)ap
1

! + µ�H + i⌘
a
†
q|�0i, (4)

where, ap = e
�T

ape
T , a†p = e

�T
a
†
pe

T and H = e
�T

He
T �

Egr.

3. Evaluation of CCGF via Linear Equation Solver

To evaluate CCGF from Eq. 4 we first define two auxiliary
quantities Xp and Yp

(! + µ +H � i⌘)Xp|�0i = ap|�0i (5)

(! + µ�H + i⌘)Yp|�0i = a
†
p|�0i. (6)

This yields the following expression of CCGF (Nooijen et.

al., Kowalski et. al.)

G
CC
pq (!) = h�0|(1 + ⇤)a

†
pXq|�0i+

h�0|(1 + ⇤)apYq|�0i (7)

To obtain Xp and Yp, we can solve Eqs. 5 and 6 via some
efficient linear equation solver. Here we point out that
• Both Eqs. 5 and 6 are frequency dependent, there-

fore Xp and Yp are frequency dependent and we have
as many equations as the number of !.

• Frequency is generally a complex quantity, hence Xp

and Yp are also complex.
These two aspects make this approach numerically tedious.

4. Evaluation via Lanczos Algorithm

In the Lanczos procedure we directly evaluate the matrix
inversion of Eq. 4, which doesn’t scale with the number of
frequencies.
Here we will invert a non-hermitian matrix H. It requires a
non-hermitian Lanczos procedure, which will be discussed
in the following:

• Lanczos procedure tridiagonalizes a matrix within a sub-
space called Krylov space. The vectors by which this
tridiagonal matrix (T) is defined are called Lanczos chain
vectors. We will have two distinct set of left and right
hand Lanczos chain vectors and will name them P and Q
respectively.

T = P
T
HQ =

0

BB@

↵1 �1 0 ... 0
�1 ↵2 �2 ... 0
0 �2 ↵3

. . . 0
0 0 . . . . . . 0

1

CCA . (8)

• Using the bi-orthogonality condition, we can derive the
recursion relations from Eq. 8 for P and Q as HQ = QT

and TP
T = P

T
H. In terms of the columns of P and Q,

that is, {pj} and {qj} those recursion relations at i-th iter-
ation are:

Hqi = �i�1qi�1 + ↵iqi + �iqi+1 (9)
p
T
i
H = �i�1p

T
i�1 + ↵ip

T
i
+ �ip

T
i+1 (10)

If we assume �0q1 = 0 and �0p
T
1 = 0, at (i+1)th iteration

we get

qi+1 =
Hqi � �i�1qi�1 � ↵iqi

�i

=
ri

�i

(11)

p
T
i+1 =

p
T
i
H � �i�1p

T
i�1 � ↵ip

T
i

�i

=
s
T
i

�i

(12)

• Convergence of the Lanczos procedure is typically
checked on the off-diagonal elements � and �. Though,
in practice, we reach convergence much earlier than that.
We choose a reasonably large number as the length of
Lanczos chain vectors to terminate our procedure. Here
is a demonstration of how this convergence is reached:
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Figure 1: Convergence of spectral function with respect to the

number of Lanczos vectors, L.

• Having obtained the tridiagonal matrix, we calculate in-
version by continued fraction:

G
CC,(h)
pp (!) =

NIP

(! + µ� i⌘) + ↵0 � �0�0

(!+µ�i⌘)+↵1� �1�1
(!+µ�i⌘)+↵2�...

(13)

• In Eq. 13, we have calculated only the diagonal ele-
ments. To evaluate off-diagonal elements we first calcu-
late Gp+q,p+q.

Gp+q,p+q = Gpp +Gqq +Gpq +Gqp. (14)

and then we can evaluate only the symmetric part of it -
1
2(Gpq +Gqp), since Gpq 6= Gqp in this case.

5. Models

Figure 2: 1D and 2D Hubbard models projected onto an impurity

problem.

H =
X

b,�

✏bc
†
b�
cb� + U

X

i

ni"ni# �
1

2
(ni" + ni#)

+
X

ib�

Vib�(c
†
i�
cb� + c

†
b�
ci�) (15)

Here, b stands for baths and i for impurities. Bath is fitted
in such a way that large/infinite lattice and smaller impurity
problem produce the same Green’s function.

6. 1D Hubbard

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0  1  2  3  4  5

[I
m

 Σ
] 0

0

ω

U=4

FCI
CCSD
CISDT
CISD

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  1  2  3  4  5

[I
m

 Σ
] 0

0

ω

U=6

FCI
CCSD
CISDT
CISD

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3  4  5

[I
m

 Σ
] 0

0

ω

U=8

FCI
CCSD
CISDT
CISD

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0  1  2  3  4  5

[I
m

 Σ
] 0

0

ω

U=20

FCI
CCSD
CISDT
CISD

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  5  10  15  20

U=4

[I
m

 Σ
] 0

0

ω

Bath 31
Bath 11

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  2  4  6  8  10

U=6

[I
m

 Σ
] 0

0

ω

Bath31
Bath11

-2.5

-2

-1.5

-1

-0.5

 0

 0  5  10  15  20

U=8

[I
m

 Σ
] 0

0

ω

Bath 31
Bath 11

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  5  10  15  20

U=20

[I
m

 Σ
] 0

0

ω

Bath 31
Bath 11

Figure 3: Left Panel: Self-energies calculated at different U values.

Comparison has been made with various CI models and CCSD. CCSD

agrees very well with FCI. CISD is unsatisfactory at the low-frequency

regime, CISDT is similar to CCSD.

Right Panel: Comparison of CCSD self-energies calculated with differ-

ent number of bath orbitals.
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Figure 4: spectral function � 1
⇧ImGii plots at different interaction

strengths (U). We see the symmetric pattern of spectral function due

to particle-hole symmetry at half-filling.

7. 2D Hubbard
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Figure 5: Left panel: FCI occupancy of the ground state. Right Panel:

Self-energy obtained with the reference suggested by FCI. There is

causality violation at low frequencies.

We have afterwards tried with closed-shell (6↵ and 6�) con-
figuration, where chemical potential of half-filling Hubbard
model doesn’t change.
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Figure 6: Left Panel: Self-energy calculated for 2D Hubbard model at

different interaction strengths. For U=2, 4 and 8 we have used closed-

shell reference, whereas with that reference we were unable to con-

verge CCSD at U=6, therefore that calculation was carried out with 7↵

and 5� configuration. We see better agreement for U=2 and 4 values.

Right Panel: Green’s function calculated with the 7↵, 5� configuration

as reference. We have not modified the half-filling µ, nevertheless, we

get very good agreement with FCI total GF.

8. Conclusions

• Cost of our CCGF doesn’t depend on the number
of frequencies, hence it is useful for those cases
where frequencies are numerous (almost all imaginary
time/frequency calculations).

• CCSD works fine for weak to medium coupling strengths
of 1D Hubbard model. For 2D Hubbard model we ob-
serve reference dependence.
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Coupled Cluster Green’s Function

using Lanczos Algorithm
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1. Motivation

• Coupled cluster (CC) wave function is very accurate for
moderately correlated systems. Evaluation of Green’s
function allows us to directly obtain the spectral proper-
ties like density of states etc. For weakly correlated pe-
riodic systems, like organic semiconductors, evaluation
of Green’s Function (GF) from CC can be a potentially
successful approach.

• In QM/QM embedding theories, coupled cluster can be
used both as a solver for the embedded part or as a non-
local correlation model for the entire system. We will try
to investigate the range of applicability of CC at different
interaction strengths, which will in turn tell us its useful-
ness in embedding theories.

• For CCGF to be a very general tool it is necessary that it
can be applied for very large number of frequency points.
All previous implementations of this method were inad-
equate in that regard. Our attempt will be to avoid that
factor in scaling.

2. Definition

Let us first define one-particle Green’s function in spectral
representation:

Gpq(!) = h |a†p
1

! + µ + (H � Egr)� i⌘
aq| i+

h |ap
1

! + µ� (H � Egr) + i⌘
a
†
q| i (1)

= G
(h)
pq +G

(p)
pq (2)

where,  is the wave function of a particular state.
In coupled cluster theory ket wave function  R is given
by e

T |�0i. Since this is a non-unitary parametrization, bra
wave function  L is not adjoint of ket. However, it is possi-
ble to define a bi-orthogonal (h L| Ri = 1) ket:

h L| = h�0|(1 + ⇤)e�T
, (3)

in terms of a linear parametrization of de-excitation opera-
tors.
If we insert  L and  R as defined above into Eq. 1, we ob-
tain CC Green’s function as below after some manipulation:

G
CC
pq (!) = h�0|(1 + ⇤)a

†
p

1

! + µ +H � i⌘
aq|�0i+

h�0|(1 + ⇤)ap
1

! + µ�H + i⌘
a
†
q|�0i, (4)

where, ap = e
�T

ape
T , a†p = e

�T
a
†
pe

T and H = e
�T

He
T �

Egr.

3. Evaluation of CCGF via Linear Equation Solver

To evaluate CCGF from Eq. 4 we first define two auxiliary
quantities Xp and Yp

(! + µ +H � i⌘)Xp|�0i = ap|�0i (5)

(! + µ�H + i⌘)Yp|�0i = a
†
p|�0i. (6)

This yields the following expression of CCGF (Nooijen et.

al., Kowalski et. al.)

G
CC
pq (!) = h�0|(1 + ⇤)a

†
pXq|�0i+

h�0|(1 + ⇤)apYq|�0i (7)

To obtain Xp and Yp, we can solve Eqs. 5 and 6 via some
efficient linear equation solver. Here we point out that
• Both Eqs. 5 and 6 are frequency dependent, there-

fore Xp and Yp are frequency dependent and we have
as many equations as the number of !.

• Frequency is generally a complex quantity, hence Xp

and Yp are also complex.
These two aspects make this approach numerically tedious.

4. Evaluation via Lanczos Algorithm

In the Lanczos procedure we directly evaluate the matrix
inversion of Eq. 4, which doesn’t scale with the number of
frequencies.
Here we will invert a non-hermitian matrix H. It requires a
non-hermitian Lanczos procedure, which will be discussed
in the following:

• Lanczos procedure tridiagonalizes a matrix within a sub-
space called Krylov space. The vectors by which this
tridiagonal matrix (T) is defined are called Lanczos chain
vectors. We will have two distinct set of left and right
hand Lanczos chain vectors and will name them P and Q
respectively.

T = P
T
HQ =

0
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• Using the bi-orthogonality condition, we can derive the
recursion relations from Eq. 8 for P and Q as HQ = QT

and TP
T = P

T
H. In terms of the columns of P and Q,

that is, {pj} and {qj} those recursion relations at i-th iter-
ation are:

Hqi = �i�1qi�1 + ↵iqi + �iqi+1 (9)
p
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T
i�1 + ↵ip

T
i
+ �ip

T
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If we assume �0q1 = 0 and �0p
T
1 = 0, at (i+1)th iteration

we get

qi+1 =
Hqi � �i�1qi�1 � ↵iqi

�i

=
ri
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(11)

p
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i+1 =

p
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H � �i�1p

T
i�1 � ↵ip

T
i

�i

=
s
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(12)

• Convergence of the Lanczos procedure is typically
checked on the off-diagonal elements � and �. Though,
in practice, we reach convergence much earlier than that.
We choose a reasonably large number as the length of
Lanczos chain vectors to terminate our procedure. Here
is a demonstration of how this convergence is reached:
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Figure 1: Convergence of spectral function with respect to the

number of Lanczos vectors, L.

• Having obtained the tridiagonal matrix, we calculate in-
version by continued fraction:

G
CC,(h)
pp (!) =

NIP

(! + µ� i⌘) + ↵0 � �0�0

(!+µ�i⌘)+↵1� �1�1
(!+µ�i⌘)+↵2�...

(13)

• In Eq. 13, we have calculated only the diagonal ele-
ments. To evaluate off-diagonal elements we first calcu-
late Gp+q,p+q.

Gp+q,p+q = Gpp +Gqq +Gpq +Gqp. (14)

and then we can evaluate only the symmetric part of it -
1
2(Gpq +Gqp), since Gpq 6= Gqp in this case.

5. Models

Figure 2: 1D and 2D Hubbard models projected onto an impurity

problem.

H =
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+
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Here, b stands for baths and i for impurities. Bath is fitted
in such a way that large/infinite lattice and smaller impurity
problem produce the same Green’s function.

6. 1D Hubbard
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Figure 3: Left Panel: Self-energies calculated at different U values.

Comparison has been made with various CI models and CCSD. CCSD

agrees very well with FCI. CISD is unsatisfactory at the low-frequency

regime, CISDT is similar to CCSD.

Right Panel: Comparison of CCSD self-energies calculated with differ-

ent number of bath orbitals.
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Self-energy obtained with the reference suggested by FCI. There is

causality violation at low frequencies.

We have afterwards tried with closed-shell (6↵ and 6�) con-
figuration, where chemical potential of half-filling Hubbard
model doesn’t change.
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Figure 6: Left Panel: Self-energy calculated for 2D Hubbard model at

different interaction strengths. For U=2, 4 and 8 we have used closed-

shell reference, whereas with that reference we were unable to con-

verge CCSD at U=6, therefore that calculation was carried out with 7↵

and 5� configuration. We see better agreement for U=2 and 4 values.

Right Panel: Green’s function calculated with the 7↵, 5� configuration

as reference. We have not modified the half-filling µ, nevertheless, we

get very good agreement with FCI total GF.

8. Conclusions

• Cost of our CCGF doesn’t depend on the number
of frequencies, hence it is useful for those cases
where frequencies are numerous (almost all imaginary
time/frequency calculations).

• CCSD works fine for weak to medium coupling strengths
of 1D Hubbard model. For 2D Hubbard model we ob-
serve reference dependence.
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1. Motivation

• Coupled cluster (CC) wave function is very accurate for
moderately correlated systems. Evaluation of Green’s
function allows us to directly obtain the spectral proper-
ties like density of states etc. For weakly correlated pe-
riodic systems, like organic semiconductors, evaluation
of Green’s Function (GF) from CC can be a potentially
successful approach.

• In QM/QM embedding theories, coupled cluster can be
used both as a solver for the embedded part or as a non-
local correlation model for the entire system. We will try
to investigate the range of applicability of CC at different
interaction strengths, which will in turn tell us its useful-
ness in embedding theories.

• For CCGF to be a very general tool it is necessary that it
can be applied for very large number of frequency points.
All previous implementations of this method were inad-
equate in that regard. Our attempt will be to avoid that
factor in scaling.

2. Definition

Let us first define one-particle Green’s function in spectral
representation:

Gpq(!) = h |a†p
1

! + µ + (H � Egr)� i⌘
aq| i+

h |ap
1

! + µ� (H � Egr) + i⌘
a
†
q| i (1)

= G
(h)
pq +G

(p)
pq (2)

where,  is the wave function of a particular state.
In coupled cluster theory ket wave function  R is given
by e

T |�0i. Since this is a non-unitary parametrization, bra
wave function  L is not adjoint of ket. However, it is possi-
ble to define a bi-orthogonal (h L| Ri = 1) ket:

h L| = h�0|(1 + ⇤)e�T
, (3)

in terms of a linear parametrization of de-excitation opera-
tors.
If we insert  L and  R as defined above into Eq. 1, we ob-
tain CC Green’s function as below after some manipulation:

G
CC
pq (!) = h�0|(1 + ⇤)a

†
p

1

! + µ +H � i⌘
aq|�0i+

h�0|(1 + ⇤)ap
1

! + µ�H + i⌘
a
†
q|�0i, (4)

where, ap = e
�T

ape
T , a†p = e

�T
a
†
pe

T and H = e
�T

He
T �

Egr.

3. Evaluation of CCGF via Linear Equation Solver

To evaluate CCGF from Eq. 4 we first define two auxiliary
quantities Xp and Yp

(! + µ +H � i⌘)Xp|�0i = ap|�0i (5)

(! + µ�H + i⌘)Yp|�0i = a
†
p|�0i. (6)

This yields the following expression of CCGF (Nooijen et.

al., Kowalski et. al.)

G
CC
pq (!) = h�0|(1 + ⇤)a

†
pXq|�0i+

h�0|(1 + ⇤)apYq|�0i (7)

To obtain Xp and Yp, we can solve Eqs. 5 and 6 via some
efficient linear equation solver. Here we point out that
• Both Eqs. 5 and 6 are frequency dependent, there-

fore Xp and Yp are frequency dependent and we have
as many equations as the number of !.

• Frequency is generally a complex quantity, hence Xp

and Yp are also complex.
These two aspects make this approach numerically tedious.

4. Evaluation via Lanczos Algorithm

In the Lanczos procedure we directly evaluate the matrix
inversion of Eq. 4, which doesn’t scale with the number of
frequencies.
Here we will invert a non-hermitian matrix H. It requires a
non-hermitian Lanczos procedure, which will be discussed
in the following:

• Lanczos procedure tridiagonalizes a matrix within a sub-
space called Krylov space. The vectors by which this
tridiagonal matrix (T) is defined are called Lanczos chain
vectors. We will have two distinct set of left and right
hand Lanczos chain vectors and will name them P and Q
respectively.

T = P
T
HQ =

0
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• Using the bi-orthogonality condition, we can derive the
recursion relations from Eq. 8 for P and Q as HQ = QT

and TP
T = P

T
H. In terms of the columns of P and Q,

that is, {pj} and {qj} those recursion relations at i-th iter-
ation are:

Hqi = �i�1qi�1 + ↵iqi + �iqi+1 (9)
p
T
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T
i�1 + ↵ip

T
i
+ �ip

T
i+1 (10)

If we assume �0q1 = 0 and �0p
T
1 = 0, at (i+1)th iteration

we get

qi+1 =
Hqi � �i�1qi�1 � ↵iqi

�i

=
ri

�i

(11)

p
T
i+1 =

p
T
i
H � �i�1p

T
i�1 � ↵ip

T
i

�i

=
s
T
i

�i

(12)

• Convergence of the Lanczos procedure is typically
checked on the off-diagonal elements � and �. Though,
in practice, we reach convergence much earlier than that.
We choose a reasonably large number as the length of
Lanczos chain vectors to terminate our procedure. Here
is a demonstration of how this convergence is reached:
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Figure 1: Convergence of spectral function with respect to the

number of Lanczos vectors, L.

• Having obtained the tridiagonal matrix, we calculate in-
version by continued fraction:

G
CC,(h)
pp (!) =

NIP

(! + µ� i⌘) + ↵0 � �0�0

(!+µ�i⌘)+↵1� �1�1
(!+µ�i⌘)+↵2�...

(13)

• In Eq. 13, we have calculated only the diagonal ele-
ments. To evaluate off-diagonal elements we first calcu-
late Gp+q,p+q.

Gp+q,p+q = Gpp +Gqq +Gpq +Gqp. (14)

and then we can evaluate only the symmetric part of it -
1
2(Gpq +Gqp), since Gpq 6= Gqp in this case.

5. Models

Figure 2: 1D and 2D Hubbard models projected onto an impurity

problem.

H =
X

b,�

✏bc
†
b�
cb� + U

X

i

ni"ni# �
1

2
(ni" + ni#)

+
X

ib�

Vib�(c
†
i�
cb� + c

†
b�
ci�) (15)

Here, b stands for baths and i for impurities. Bath is fitted
in such a way that large/infinite lattice and smaller impurity
problem produce the same Green’s function.

6. 1D Hubbard
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Figure 3: Left Panel: Self-energies calculated at different U values.

Comparison has been made with various CI models and CCSD. CCSD

agrees very well with FCI. CISD is unsatisfactory at the low-frequency

regime, CISDT is similar to CCSD.

Right Panel: Comparison of CCSD self-energies calculated with differ-

ent number of bath orbitals.
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Figure 4: spectral function � 1
⇧ImGii plots at different interaction

strengths (U). We see the symmetric pattern of spectral function due

to particle-hole symmetry at half-filling.
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Figure 5: Left panel: FCI occupancy of the ground state. Right Panel:

Self-energy obtained with the reference suggested by FCI. There is

causality violation at low frequencies.

We have afterwards tried with closed-shell (6↵ and 6�) con-
figuration, where chemical potential of half-filling Hubbard
model doesn’t change.
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Figure 6: Left Panel: Self-energy calculated for 2D Hubbard model at

different interaction strengths. For U=2, 4 and 8 we have used closed-

shell reference, whereas with that reference we were unable to con-

verge CCSD at U=6, therefore that calculation was carried out with 7↵

and 5� configuration. We see better agreement for U=2 and 4 values.

Right Panel: Green’s function calculated with the 7↵, 5� configuration

as reference. We have not modified the half-filling µ, nevertheless, we

get very good agreement with FCI total GF.

8. Conclusions

• Cost of our CCGF doesn’t depend on the number
of frequencies, hence it is useful for those cases
where frequencies are numerous (almost all imaginary
time/frequency calculations).

• CCSD works fine for weak to medium coupling strengths
of 1D Hubbard model. For 2D Hubbard model we ob-
serve reference dependence.
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1. Motivation

• Coupled cluster (CC) wave function is very accurate for
moderately correlated systems. Evaluation of Green’s
function allows us to directly obtain the spectral proper-
ties like density of states etc. For weakly correlated pe-
riodic systems, like organic semiconductors, evaluation
of Green’s Function (GF) from CC can be a potentially
successful approach.

• In QM/QM embedding theories, coupled cluster can be
used both as a solver for the embedded part or as a non-
local correlation model for the entire system. We will try
to investigate the range of applicability of CC at different
interaction strengths, which will in turn tell us its useful-
ness in embedding theories.

• For CCGF to be a very general tool it is necessary that it
can be applied for very large number of frequency points.
All previous implementations of this method were inad-
equate in that regard. Our attempt will be to avoid that
factor in scaling.

2. Definition

Let us first define one-particle Green’s function in spectral
representation:

Gpq(!) = h |a†p
1

! + µ + (H � Egr)� i⌘
aq| i+

h |ap
1

! + µ� (H � Egr) + i⌘
a
†
q| i (1)

= G
(h)
pq +G

(p)
pq (2)

where,  is the wave function of a particular state.
In coupled cluster theory ket wave function  R is given
by e

T |�0i. Since this is a non-unitary parametrization, bra
wave function  L is not adjoint of ket. However, it is possi-
ble to define a bi-orthogonal (h L| Ri = 1) ket:

h L| = h�0|(1 + ⇤)e�T
, (3)

in terms of a linear parametrization of de-excitation opera-
tors.
If we insert  L and  R as defined above into Eq. 1, we ob-
tain CC Green’s function as below after some manipulation:

G
CC
pq (!) = h�0|(1 + ⇤)a

†
p

1

! + µ +H � i⌘
aq|�0i+

h�0|(1 + ⇤)ap
1

! + µ�H + i⌘
a
†
q|�0i, (4)

where, ap = e
�T

ape
T , a†p = e

�T
a
†
pe

T and H = e
�T

He
T �

Egr.

3. Evaluation of CCGF via Linear Equation Solver

To evaluate CCGF from Eq. 4 we first define two auxiliary
quantities Xp and Yp

(! + µ +H � i⌘)Xp|�0i = ap|�0i (5)

(! + µ�H + i⌘)Yp|�0i = a
†
p|�0i. (6)

This yields the following expression of CCGF (Nooijen et.

al., Kowalski et. al.)

G
CC
pq (!) = h�0|(1 + ⇤)a

†
pXq|�0i+

h�0|(1 + ⇤)apYq|�0i (7)

To obtain Xp and Yp, we can solve Eqs. 5 and 6 via some
efficient linear equation solver. Here we point out that
• Both Eqs. 5 and 6 are frequency dependent, there-

fore Xp and Yp are frequency dependent and we have
as many equations as the number of !.

• Frequency is generally a complex quantity, hence Xp

and Yp are also complex.
These two aspects make this approach numerically tedious.

4. Evaluation via Lanczos Algorithm

In the Lanczos procedure we directly evaluate the matrix
inversion of Eq. 4, which doesn’t scale with the number of
frequencies.
Here we will invert a non-hermitian matrix H. It requires a
non-hermitian Lanczos procedure, which will be discussed
in the following:

• Lanczos procedure tridiagonalizes a matrix within a sub-
space called Krylov space. The vectors by which this
tridiagonal matrix (T) is defined are called Lanczos chain
vectors. We will have two distinct set of left and right
hand Lanczos chain vectors and will name them P and Q
respectively.

T = P
T
HQ =

0
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• Using the bi-orthogonality condition, we can derive the
recursion relations from Eq. 8 for P and Q as HQ = QT

and TP
T = P

T
H. In terms of the columns of P and Q,

that is, {pj} and {qj} those recursion relations at i-th iter-
ation are:

Hqi = �i�1qi�1 + ↵iqi + �iqi+1 (9)
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If we assume �0q1 = 0 and �0p
T
1 = 0, at (i+1)th iteration

we get
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=
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• Convergence of the Lanczos procedure is typically
checked on the off-diagonal elements � and �. Though,
in practice, we reach convergence much earlier than that.
We choose a reasonably large number as the length of
Lanczos chain vectors to terminate our procedure. Here
is a demonstration of how this convergence is reached:
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Figure 1: Convergence of spectral function with respect to the

number of Lanczos vectors, L.

• Having obtained the tridiagonal matrix, we calculate in-
version by continued fraction:

G
CC,(h)
pp (!) =

NIP

(! + µ� i⌘) + ↵0 � �0�0

(!+µ�i⌘)+↵1� �1�1
(!+µ�i⌘)+↵2�...

(13)

• In Eq. 13, we have calculated only the diagonal ele-
ments. To evaluate off-diagonal elements we first calcu-
late Gp+q,p+q.

Gp+q,p+q = Gpp +Gqq +Gpq +Gqp. (14)

and then we can evaluate only the symmetric part of it -
1
2(Gpq +Gqp), since Gpq 6= Gqp in this case.

5. Models

Figure 2: 1D and 2D Hubbard models projected onto an impurity

problem.

H =
X

b,�

✏bc
†
b�
cb� + U

X

i

ni"ni# �
1

2
(ni" + ni#)

+
X

ib�

Vib�(c
†
i�
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†
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Here, b stands for baths and i for impurities. Bath is fitted
in such a way that large/infinite lattice and smaller impurity
problem produce the same Green’s function.

6. 1D Hubbard

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0  1  2  3  4  5

[I
m

 Σ
] 0

0

ω

U=4

FCI
CCSD
CISDT
CISD

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  1  2  3  4  5

[I
m

 Σ
] 0

0

ω

U=6

FCI
CCSD
CISDT
CISD

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3  4  5

[I
m

 Σ
] 0

0

ω

U=8

FCI
CCSD
CISDT
CISD

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0  1  2  3  4  5

[I
m

 Σ
] 0

0

ω

U=20

FCI
CCSD
CISDT
CISD

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  5  10  15  20

U=4

[I
m

 Σ
] 0

0

ω

Bath 31
Bath 11

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  2  4  6  8  10

U=6

[I
m

 Σ
] 0

0

ω

Bath31
Bath11

-2.5

-2

-1.5

-1

-0.5

 0

 0  5  10  15  20

U=8

[I
m

 Σ
] 0

0

ω

Bath 31
Bath 11

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  5  10  15  20

U=20

[I
m

 Σ
] 0

0

ω

Bath 31
Bath 11

Figure 3: Left Panel: Self-energies calculated at different U values.

Comparison has been made with various CI models and CCSD. CCSD

agrees very well with FCI. CISD is unsatisfactory at the low-frequency

regime, CISDT is similar to CCSD.

Right Panel: Comparison of CCSD self-energies calculated with differ-

ent number of bath orbitals.
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Figure 4: spectral function � 1
⇧ImGii plots at different interaction

strengths (U). We see the symmetric pattern of spectral function due

to particle-hole symmetry at half-filling.

7. 2D Hubbard
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Figure 5: Left panel: FCI occupancy of the ground state. Right Panel:

Self-energy obtained with the reference suggested by FCI. There is

causality violation at low frequencies.

We have afterwards tried with closed-shell (6↵ and 6�) con-
figuration, where chemical potential of half-filling Hubbard
model doesn’t change.
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Figure 6: Left Panel: Self-energy calculated for 2D Hubbard model at

different interaction strengths. For U=2, 4 and 8 we have used closed-

shell reference, whereas with that reference we were unable to con-

verge CCSD at U=6, therefore that calculation was carried out with 7↵

and 5� configuration. We see better agreement for U=2 and 4 values.

Right Panel: Green’s function calculated with the 7↵, 5� configuration

as reference. We have not modified the half-filling µ, nevertheless, we

get very good agreement with FCI total GF.

8. Conclusions

• Cost of our CCGF doesn’t depend on the number
of frequencies, hence it is useful for those cases
where frequencies are numerous (almost all imaginary
time/frequency calculations).

• CCSD works fine for weak to medium coupling strengths
of 1D Hubbard model. For 2D Hubbard model we ob-
serve reference dependence.
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Unstable around the poles in real frequency calculations.



CCGF continues…

Advantages over other formulations: 

• Scaling is independent of  

• Doesn’t suffer from instability at specific frequency points. 

• No complex response equations.

Nω

Shee, Zgid JCTC 2019

Coupled Cluster Green’s Function

using Lanczos Algorithm
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1. Motivation

• Coupled cluster (CC) wave function is very accurate for
moderately correlated systems. Evaluation of Green’s
function allows us to directly obtain the spectral proper-
ties like density of states etc. For weakly correlated pe-
riodic systems, like organic semiconductors, evaluation
of Green’s Function (GF) from CC can be a potentially
successful approach.

• In QM/QM embedding theories, coupled cluster can be
used both as a solver for the embedded part or as a non-
local correlation model for the entire system. We will try
to investigate the range of applicability of CC at different
interaction strengths, which will in turn tell us its useful-
ness in embedding theories.

• For CCGF to be a very general tool it is necessary that it
can be applied for very large number of frequency points.
All previous implementations of this method were inad-
equate in that regard. Our attempt will be to avoid that
factor in scaling.

2. Definition

Let us first define one-particle Green’s function in spectral
representation:

Gpq(!) = h |a†p
1

! + µ + (H � Egr)� i⌘
aq| i+

h |ap
1

! + µ� (H � Egr) + i⌘
a
†
q| i (1)

= G
(h)
pq +G

(p)
pq (2)

where,  is the wave function of a particular state.
In coupled cluster theory ket wave function  R is given
by e

T |�0i. Since this is a non-unitary parametrization, bra
wave function  L is not adjoint of ket. However, it is possi-
ble to define a bi-orthogonal (h L| Ri = 1) ket:

h L| = h�0|(1 + ⇤)e�T
, (3)

in terms of a linear parametrization of de-excitation opera-
tors.
If we insert  L and  R as defined above into Eq. 1, we ob-
tain CC Green’s function as below after some manipulation:

G
CC
pq (!) = h�0|(1 + ⇤)a

†
p

1

! + µ +H � i⌘
aq|�0i+

h�0|(1 + ⇤)ap
1

! + µ�H + i⌘
a
†
q|�0i, (4)

where, ap = e
�T

ape
T , a†p = e

�T
a
†
pe

T and H = e
�T

He
T �

Egr.

3. Evaluation of CCGF via Linear Equation Solver

To evaluate CCGF from Eq. 4 we first define two auxiliary
quantities Xp and Yp

(! + µ +H � i⌘)Xp|�0i = ap|�0i (5)

(! + µ�H + i⌘)Yp|�0i = a
†
p|�0i. (6)

This yields the following expression of CCGF (Nooijen et.

al., Kowalski et. al.)

G
CC
pq (!) = h�0|(1 + ⇤)a

†
pXq|�0i+

h�0|(1 + ⇤)apYq|�0i (7)

To obtain Xp and Yp, we can solve Eqs. 5 and 6 via some
efficient linear equation solver. Here we point out that
• Both Eqs. 5 and 6 are frequency dependent, there-

fore Xp and Yp are frequency dependent and we have
as many equations as the number of !.

• Frequency is generally a complex quantity, hence Xp

and Yp are also complex.
These two aspects make this approach numerically tedious.

4. Evaluation via Lanczos Algorithm

In the Lanczos procedure we directly evaluate the matrix
inversion of Eq. 4, which doesn’t scale with the number of
frequencies.
Here we will invert a non-hermitian matrix H. It requires a
non-hermitian Lanczos procedure, which will be discussed
in the following:

• Lanczos procedure tridiagonalizes a matrix within a sub-
space called Krylov space. The vectors by which this
tridiagonal matrix (T) is defined are called Lanczos chain
vectors. We will have two distinct set of left and right
hand Lanczos chain vectors and will name them P and Q
respectively.

T = P
T
HQ =

0

BB@

↵1 �1 0 ... 0
�1 ↵2 �2 ... 0
0 �2 ↵3

. . . 0
0 0 . . . . . . 0

1

CCA . (8)

• Using the bi-orthogonality condition, we can derive the
recursion relations from Eq. 8 for P and Q as HQ = QT

and TP
T = P

T
H. In terms of the columns of P and Q,

that is, {pj} and {qj} those recursion relations at i-th iter-
ation are:

Hqi = �i�1qi�1 + ↵iqi + �iqi+1 (9)
p
T
i
H = �i�1p

T
i�1 + ↵ip

T
i
+ �ip

T
i+1 (10)

If we assume �0q1 = 0 and �0p
T
1 = 0, at (i+1)th iteration

we get

qi+1 =
Hqi � �i�1qi�1 � ↵iqi

�i

=
ri

�i

(11)

p
T
i+1 =

p
T
i
H � �i�1p

T
i�1 � ↵ip

T
i

�i

=
s
T
i

�i

(12)

• Convergence of the Lanczos procedure is typically
checked on the off-diagonal elements � and �. Though,
in practice, we reach convergence much earlier than that.
We choose a reasonably large number as the length of
Lanczos chain vectors to terminate our procedure. Here
is a demonstration of how this convergence is reached:
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Figure 1: Convergence of spectral function with respect to the

number of Lanczos vectors, L.

• Having obtained the tridiagonal matrix, we calculate in-
version by continued fraction:

G
CC,(h)
pp (!) =

NIP

(! + µ� i⌘) + ↵0 � �0�0

(!+µ�i⌘)+↵1� �1�1
(!+µ�i⌘)+↵2�...

(13)

• In Eq. 13, we have calculated only the diagonal ele-
ments. To evaluate off-diagonal elements we first calcu-
late Gp+q,p+q.

Gp+q,p+q = Gpp +Gqq +Gpq +Gqp. (14)

and then we can evaluate only the symmetric part of it -
1
2(Gpq +Gqp), since Gpq 6= Gqp in this case.

5. Models

Figure 2: 1D and 2D Hubbard models projected onto an impurity

problem.
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Here, b stands for baths and i for impurities. Bath is fitted
in such a way that large/infinite lattice and smaller impurity
problem produce the same Green’s function.

6. 1D Hubbard
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Figure 3: Left Panel: Self-energies calculated at different U values.

Comparison has been made with various CI models and CCSD. CCSD

agrees very well with FCI. CISD is unsatisfactory at the low-frequency

regime, CISDT is similar to CCSD.

Right Panel: Comparison of CCSD self-energies calculated with differ-

ent number of bath orbitals.

 0

 0.5

 1

 1.5

 2

 2.5

 3

-6 -4 -2  0  2  4  6

A
ii

U=4

CCSD

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

-6 -4 -2  0  2  4  6

A
ii

U=6

CCSD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-6 -4 -2  0  2  4  6

A
ii

U=8

CCSD

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-6 -4 -2  0  2  4  6

A
ii

U=20

CCSD

Figure 4: spectral function � 1
⇧ImGii plots at different interaction

strengths (U). We see the symmetric pattern of spectral function due

to particle-hole symmetry at half-filling.

7. 2D Hubbard
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Figure 5: Left panel: FCI occupancy of the ground state. Right Panel:

Self-energy obtained with the reference suggested by FCI. There is

causality violation at low frequencies.

We have afterwards tried with closed-shell (6↵ and 6�) con-
figuration, where chemical potential of half-filling Hubbard
model doesn’t change.
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Figure 6: Left Panel: Self-energy calculated for 2D Hubbard model at

different interaction strengths. For U=2, 4 and 8 we have used closed-

shell reference, whereas with that reference we were unable to con-

verge CCSD at U=6, therefore that calculation was carried out with 7↵

and 5� configuration. We see better agreement for U=2 and 4 values.

Right Panel: Green’s function calculated with the 7↵, 5� configuration

as reference. We have not modified the half-filling µ, nevertheless, we

get very good agreement with FCI total GF.

8. Conclusions

• Cost of our CCGF doesn’t depend on the number
of frequencies, hence it is useful for those cases
where frequencies are numerous (almost all imaginary
time/frequency calculations).

• CCSD works fine for weak to medium coupling strengths
of 1D Hubbard model. For 2D Hubbard model we ob-
serve reference dependence.
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GCC
(N−1)(ω) =

NIP

(ω + μ − iη) + α0 − γ0β0

(ω + μ − iη) + α1 − γ1β1
(ω + μ − iη) + α2 − . . .

For inversion we do Lanczos based tridiagonalization followed by continued fraction  



Further discussion of scaling of CCGF
N-particle problem scales as   n6

(N-1)/(N+1)-particle problem scales as n5

 consists of n(n+1)/2 number of (N-1)/(N+1)-particle problems. We parallelize over the number of elements:   Gpq

    total_num_tasks = Ns*(Ns+1)//2  
    max_processes = args.ccsdgf_procs if total_num_tasks >=args.ccsdgf_procs else total_num_tasks 
    task_size = total_num_tasks//max_processes 
    task_list = np.array([task_size]*max_processes) 
    for i in range(total_num_tasks % max_processes): 
      task_list[i] += 1 

    print("Calculating CCSD Green's function for impurity ", str(imp)) 
    sys.stdout.flush() 
    calc_gf(iter, imp, Ns, nno, a, b, args.aquarius, task_list, nw, inv_T, args.cc_num_lanczos)

Using python multiprocessing 

module

Aquarius is mpi parallelized. But because of the single node requirement of python we can’t take much 
advantage of it yet. 
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(⌃GW )k is fixed

Choose an orthogonal 
impurity basis

1. Compute and fit hybridization 
function to get bath orbitals.  

2. Build local AIM

Distribute electrons in (impurity + 
bath) number of  and  spin-orbitals 

to get different particle sectors, 
α β

Nsectors : (nα, nβ)

Solve UHF for all those particle 
sectors and select a few low energy 

ones Msectors ≪ Nsectors

Solve UCCSD for  and find the 
lowest energy one. 
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Get GFCCSD for the lowest-
energy sector in HF basis GUCCSD

mo

Transform  to  and 
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mo GUCCSD

imp
ΣUCCSD

imp C
C

G
F 

co
ns

tr
uc

tio
n

GFCCSD solver
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Assemble non-local  and 
local  to update                  .   
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ΣUCCSD
imp
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Particle sector search
Why it is important?

Correct chemical potential for the correlated problem is unknown

What we do:

Distribute electrons in (impurity + 
bath) number of alpha and beta spin-

orbitals to get different particle 
sectors, Nsectors : (nα, nβ)

Solve UHF for all those particle 
sectors and select a few low energy 

ones Msectors ≪ Nsectors

Solve UCCSD for  and find the 
lowest energy one. 
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    m=UHF(mol) 
    m.ah_level_shift = 100.0 

    eri = np.zeros((Ns,Ns,Ns,Ns)) 
    eri[:nno,:nno,:nno,:nno] = U 
    # TODO Check what this does? 
    m._eri = ao2mo.restore(8, eri, Ns) 
    m.get_hcore = lambda *args: np.array((H0[0], H0[1])) 
    m.get_ovlp = lambda *args: np.eye(Ns) 

    m = m.run() 
    mo1 = m.stability()[0] 
    dm1 = m.make_rdm1(mo1, m.mo_occ) 

    m = m.newton().run(mo1, m.mo_occ) 
    m.stability() 
    E = m.kernel() 

Converging UHF to the correct root is a challenge!



Analysis of particle sector search
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UHF UCCSD UCCSD(T) ED

(9,6), (6,9) [-19.059] (9,6), (6,9) [-19.083] (8,7), (7,8) [-19.092] (9,6), (6,9), (8,7), (7,8) [-19.086]

(9,7), (7,9) [-19.027] (8,7), (7,8) [-19.073] (9,6), (6,9) [-19.088] (8,7), (7,8) [-19.043]

(8,7), (7,8) [-19.023] (8,6), (6,8) [-19.031] (8,6), (6,8) [-19.036] (8,7), (7,8) [-19.041]

Table III. Ordering of particle sectors for Mn t2g in SrMnO3 found by UHF, UCCSD, UCCSD(T) and ED. The corresponding
total energies (in a.u.) are denoted in square brackets.

UHF UCCSD UCCSD(T) ED

(8,5), (5,8), (6,8), (8,6) [-5.771] (6,6) [-5.855] (6,6) [-5.872] (6,6) [-5.866]

(8,7), (7,8) [-5.765] (7,6), (6,7) [-5.846] (7,6), (6,7) [-5.861] (7,6), (6,7) [-5.855]

(6,6) [-5.757] (8,6), (6,8) [-5.839] (7,7) [-5.849] (6,5), (5,6) [-5.848]

Table IV. Ordering of particle sectors for O p⇡ in SrMnO3 found by UHF, UCCSD, UCCSD(T) and ED. The corresponding
total energies (in a.u.) are denoted in square brackets.

tunately, during self-consistent loop our particle-sector
search based on UCCSD energy becomes unstable due
to flipping of the energies of (n↵ = 6, n� = 6) and
((n↵ = 6, n� = 7); (n↵ = 7, n� = 6)) particle sec-
tors from iteration to iteration. Correlations beyond
UCCSD are necessary to consistently distinguish the
ground state (n↵ = 6, n� = 6) and the first excited states
((n↵ = 6, n� = 7); (n↵ = 7, n� = 6)). Therefore, to
stabilize the self-consistency procedure (similarly as in
the case of MnO 2p impurity), we constrain the particle-
sector space to states that contain the same number of ↵

and � electrons.

IV. CONCLUSIONS AND DISCUSSION OF THE
POTENTIAL OF GFCC SOLVERS

We have investigated the performance of GFCCSD
solver for realistic impurity problems present in AFM
MnO and PM SrMnO3 by analyzing impurity self-
energies and local DOS for each of these compounds. Our
ab initio impurity Hamiltonians were constructed during
the SEET(GW/CCSD) self-consistency procedure. In
this way, we examined impurity Hamiltonians present in
realistic materials calculations avoiding possible simpli-
fications that may be present in the low-energy models
analyzed in the previous papers [24, 25].

Our work demonstrates that GFCCSD solver is able
to provide a satisfactory description for moderately cor-
related impurity problems. We observed that the self-
energies from impurities containing t2g and eg orbitals
of Mn were in an excellent agreement with the ones
evaluated by ED. However, for impurities containing 2p

orbitals of O both in the case of MnO and SrMnO3,
we observed significant discrepancies between ED and
GFCCSD solvers. Consequently, we conclude that when
correlations become stronger, higher order approxima-
tions in the CC theory are necessary for an excellent

agreement with ED. This result is expected and com-
pletely supported by the experience gained in the quan-
tum chemistry community with treating molecular sys-
tems at the CCSD level.

By limiting GFCC solver to the singles and doubles ap-
proximation, impurities with around hundred orbitals are
very easily possible due to its polynomial scaling both for
the parent UCCSD calculation and later at the Green’s
function construction stage. Note that this allows one
to dramatically extend both the number of impurity or-
bitals as well as the number of bath orbitals. However, we
also demonstrated that the singles and doubles approxi-
mation could lead to instabilities in the particle number
search procedure when electron correlations are strong.
Consequently, for impurities containing a large number
of d and p orbitals where multiple possibilities of degen-
erate orbitals leading to strong correlation e↵ects exist,
we advise caution when employing GFCCSD solver.

In our opinion, the relative di�culty in searching for
the particle number in the impurity problem is the most
significant drawback of the GFCCSD solver since for zero
temperature problems it may lead to the construction of
Green’s function corresponding to a ground state with a
wrong particle number. Consequently, when performing
SEET(GW/CCSD) calculations with GFCCSD in zero-
temperature limit, we are very careful to find an impurity
ground state with a correct particle number. For other
approximate wavefunction-based solvers such as the ones
based on RASCI [58], it is possible to perform a finite
temperature calculation where a Green’s function is con-
structed using ground and excited states that are close
in energy and can come from sectors with di↵erent num-
ber of particles. In this way multiple states are used and
weighted with Boltzmann factors to construct a Green’s
function. In this procedure, even if the energy ordering of
states is not perfect, the information from many states is
retained mitigating small errors in the ordering of states.
The same procedure cannot be applied to the CC method

We often restrict the search within a specific spin.

1. Unphysical mixing of spin sectors happen 


2. UHF can predict a wrong particle sector.
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tunately, during self-consistent loop our particle-sector
search based on UCCSD energy becomes unstable due
to flipping of the energies of (n↵ = 6, n� = 6) and
((n↵ = 6, n� = 7); (n↵ = 7, n� = 6)) particle sec-
tors from iteration to iteration. Correlations beyond
UCCSD are necessary to consistently distinguish the
ground state (n↵ = 6, n� = 6) and the first excited states
((n↵ = 6, n� = 7); (n↵ = 7, n� = 6)). Therefore, to
stabilize the self-consistency procedure (similarly as in
the case of MnO 2p impurity), we constrain the particle-
sector space to states that contain the same number of ↵

and � electrons.

IV. CONCLUSIONS AND DISCUSSION OF THE
POTENTIAL OF GFCC SOLVERS

We have investigated the performance of GFCCSD
solver for realistic impurity problems present in AFM
MnO and PM SrMnO3 by analyzing impurity self-
energies and local DOS for each of these compounds. Our
ab initio impurity Hamiltonians were constructed during
the SEET(GW/CCSD) self-consistency procedure. In
this way, we examined impurity Hamiltonians present in
realistic materials calculations avoiding possible simpli-
fications that may be present in the low-energy models
analyzed in the previous papers [24, 25].

Our work demonstrates that GFCCSD solver is able
to provide a satisfactory description for moderately cor-
related impurity problems. We observed that the self-
energies from impurities containing t2g and eg orbitals
of Mn were in an excellent agreement with the ones
evaluated by ED. However, for impurities containing 2p

orbitals of O both in the case of MnO and SrMnO3,
we observed significant discrepancies between ED and
GFCCSD solvers. Consequently, we conclude that when
correlations become stronger, higher order approxima-
tions in the CC theory are necessary for an excellent

agreement with ED. This result is expected and com-
pletely supported by the experience gained in the quan-
tum chemistry community with treating molecular sys-
tems at the CCSD level.

By limiting GFCC solver to the singles and doubles ap-
proximation, impurities with around hundred orbitals are
very easily possible due to its polynomial scaling both for
the parent UCCSD calculation and later at the Green’s
function construction stage. Note that this allows one
to dramatically extend both the number of impurity or-
bitals as well as the number of bath orbitals. However, we
also demonstrated that the singles and doubles approxi-
mation could lead to instabilities in the particle number
search procedure when electron correlations are strong.
Consequently, for impurities containing a large number
of d and p orbitals where multiple possibilities of degen-
erate orbitals leading to strong correlation e↵ects exist,
we advise caution when employing GFCCSD solver.

In our opinion, the relative di�culty in searching for
the particle number in the impurity problem is the most
significant drawback of the GFCCSD solver since for zero
temperature problems it may lead to the construction of
Green’s function corresponding to a ground state with a
wrong particle number. Consequently, when performing
SEET(GW/CCSD) calculations with GFCCSD in zero-
temperature limit, we are very careful to find an impurity
ground state with a correct particle number. For other
approximate wavefunction-based solvers such as the ones
based on RASCI [58], it is possible to perform a finite
temperature calculation where a Green’s function is con-
structed using ground and excited states that are close
in energy and can come from sectors with di↵erent num-
ber of particles. In this way multiple states are used and
weighted with Boltzmann factors to construct a Green’s
function. In this procedure, even if the energy ordering of
states is not perfect, the information from many states is
retained mitigating small errors in the ordering of states.
The same procedure cannot be applied to the CC method

 impurity of t2g SrMnO3

P impurity of  SrMnO3



Total Energy based analysis of the particle sector

Total energy in the particle sector search is another good indicator of the accuracy of

the solver.

For A+B+C, SEET(GW/CCSD) fails to converge!! 

8. DISCUSSION
720 For a SEET calculation to be predictive, we have to depend on
721 several factors: (a) accuracy of bath fitting; (b) accuracy of the
722 method used for describing weak correlation; (c) choice of a
723 suitable basis set for impurity; (d) choice of the right orbitals for
724 impurity; (e) accuracy of the particle sector search; and (f)
725 accuracy of the solver. Although it appears in the current work
726 that we are interested only in the last factor (f), the final result is
727 actually an interplay of all of them. For brevity reasons we will
728 leave out factors (a) and (b) from the current discussion, except
729 mentioning that they are quite satisfactory for the current work.
730 We have discussed factor (c) in detail in section 6, and opted for
731 NOs from GW over SAOs. We have found that factors (d), (e),

732and (f) are completely intertwined, so in the following we will
733make general remarks based on all these three points.
734The GFCCSD solver is quite comparable to the ED solver,
735when the size of the impurity remains small. Therefore, if we can
736choose in a physically motivated way a suitable set of impurities
737containing a relatively small number of impurity orbitals, we can

Figure 5. Comparison of the imaginary part of the Matsubara self-energies (in au) for the MnOmolecule. The self-energies of σ, σ* and π, π* orbitals
are shown.

Table 5. Comparison of Correlation Energies in au for
Various Impurities with an Increasing Rank of CCTheory for
the MnO Molecule Using an Impurity Hamiltoniana

imp CCSD CCSDT CCSDTQ ED

A −0.009756 −0.009761 −0.009761 −0.009768
B −0.017697 −0.017818 −0.017818 −0.017821
C −0.017696 −0.017818 −0.017818 −0.017867
A + B + C −0.150818 −0.167700 too costly due to

size
too costly due to
size

aFor the combined impurity A + B + C, we were unable to carry out a
CCSDTQ calculation. Separate impurities A, B, C, and a combined
one A + B + C contain 10, 14, 14, and 47 orbitals in total, respectively.
The total number of orbitals is not additive for the A + B + C
impurity because we fit the bath again for all the system orbitals
considered for that impurity.

Table 6. Choice of Impurities for Transition Metal Oxidesa

molecule choice of impurities
impurity
(Nimp+bath)

ScO A: [σSc:3dz2+O:2pz, σSc:4s+3dz2+O:2pz, σSc:3dz2+O:2pz* ,
δSc:3dx2−y2 ],

B: [pπx, pπy, dπx, dπy ] A(17), B(16)

TiO A: [σTi:3pz+O:2s+3s, σTi:3dz2+O:2pz, δTi:3dxy, σTi:3dz2+O:2pz* ] A(16)

VO A: [σV:3dz2+O:2pz, σV:3dz2+O:2pz* , σV:3dz2+O:4pz+4s, δV:3dx2−y2] A(17)

CrO A: [σCr:3dz2+O:2pz, σCr:4s+3dz2+O:2pz, σCr:4s+3dz2+O:2pz* ,
δCr:3dx2−y2]

A(17)

MnO A: [σMn:3dz
2
+O:2pz, σMn:4s+3dz2+O:2pz

* , δMn:3dxy],

B: [pπMn:3dxz+O:2px, dπMn:3dxz+O:2px, πMn:4px+O:4px,
dπMn:4dxz+O:4px],

C: [pπMn:3dyz+py+O:2py, dπMn:3dyz+O:2py, πMn:4py+O:4py,
dπMn:4dyz+O:4py]

A(10); B(14);
C(14)

FeO A: [σFe:3dz2+O:2pz, δFe:3dx2−y2] A (10)

CuO A: [σCu:3dz2+O:2pz, σCu:4s+O:2pz, σCu:4s+4dz2+O:4s + pz
* ],

B: [dπCu:3dyz+O:2py+3py, πCu:4px+O:2px+3px, πCu:4py+O:2py,
πCu:4px+O:3px+4px* , πCu:4py+4dyz+O:4py* ]

A(11); B(22)

aIn the last column, the total number of orbitals (impurity orbitals +
bath orbitals) for each respective impurity from the middle column is
listed.
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A : [σMn:3dz2+O:2pz
, σ*Mn:4s+3dz2+O:2pz

, δMn:3dxy
],

B : [pπMn:3dxz+O:2px, dπMn:3dxz+O:2px
, πMn:4px+O:4px

, dπMn:4dxz+O:4px
],

C : [pπMn:3dyz+py+O:2py
, dπMn:3dyz+O:2py

, πMn:4py+O:4py
, dπMn:4dyz+O:4py

]

Choice of impurities for the example of MnO: 

1. Correlation energy gives an estimate of the convergence w.r.t. rank

2. Low rank truncation often insufficient if number of particles in an impurity is high.



Thermal Green’s function?

G =
∑k e−iβ(ϵk−ϵ0)gk

∑k e−iβ(ϵk−ϵ0)

1. We need to evaluate s for different particle sectors.


2.  Both for ground and excited states of each of them.

gk

With coupled cluster we can evaluate only the ground state Green’s function. This is a limitation of this formulation. 

For spin-degenerate cases, we always employ the averaging, i.e.,  +  (mα, nβ) (nα, mβ)

For other degenerate cases, it is not perfect. This can be a problem for metallic cases.  



Whether CCSD truncation is sufficient?



Oxide Perovskite SrMnO3 

Ohara9 while more recent results by Kikuchi et al.10 and
Chmaissem et al.11 give 250 and 233 K, respectively. The
difference in TN is probably caused by differences in the
oxygen stoichiometry of the samples also here.

Both the hexagonal and the cubic polymorphs are semi-
conductors. The electronic properties are, however, largely
affected by stoichiometry. Hexagonal SrMnO3 when heated
in air is stoichiometric at room temperature but loses oxygen
at high temperatures and has composition SrMnO2.89 at the
transition to the cubic polymorph at around 1400 °C.12 Simi-
larly, the cubic modification is largely nonstoichiometric and
cubic SrMnO2.62 obtained on quenching from 1740 °C is
reoxidized at around 300 °C to produce stoichiometric cubic
SrMnO3. Hence, experimental data must be treated with
care, and the characterization of the oxygen deficiency of the
sample is important. Hexagonal SrMnO3 produced by an-
nealing in air at 900 °C show semiconducting behavior and
the conductivity varies from 6.0–10−6 S cm−1 at room tem-
perature to 0.5 S cm−1 at 1000 °C.13 The electric conductiv-
ity of cubic SrMnO3 varies very little in the temperature
range from 100 to 300 K, approximately from
10−2 S cm−1 to 0.5 S cm−1.14 A larger band gap for the hex-
agonal modification is inferred.

The nature of the band gap has been investigated both
experimentally and theoretically and there is some discussion
on whether SrMnO3 and its close relative CaMnO3 are in the
Mott-Hubbard or charge-transfer regime. In oxides of the
early first series transition metals !Ti and V" the band gap is
a d-d gap where the direct Coulomb repulsion between elec-
trons in the same orbitals U is clearly smaller than the p-d
charge transfer energy !. Oxides of the late first series tran-
sition metals !Cu and Ni" on the other hand, have charge-
transfer type band gaps since the order of energy is reversed;
!"U.15 This has been shown by a range of studies using
different spectroscopic techniques that have focused largely
on the effect of hole doping of early and late transition metal
oxides. The 3dn ground state of the undoped compound be-
comes dn and 3dn−1 for early transition metals !U"!" and
3dnL! for late transition metals !U#!", where L! denotes a
ligand hole. For U=! the states will be of heavily mixed
character. Manganese oxides being in the intermediate region
of the Zaanen, Sawatzky, Allen phase diagram15 represent
less clear-cut cases.16 From spectroscopic measurements Ab-
bate et al.17 and Chainani et al.18 suggested heavily mixed
ground states for La1−xSrxMnO3. On the other hand, Saitoh et
al.19 and Zampieri et al.20 proposed a band gap that to a large
extent is of the charge-transfer type for SrMnO3 and
CaMnO3.

First-principles band-structure calculations suggest that
cubic G-type antiferromagnetically ordered SrMnO3 is an
insulator !at 0 K" with a small band gap.21 The nature of the
band gap was not discussed, but the results agree with the
electronic structure of the cubic and orthorhombic modifica-
tions of the related compound CaMnO3. The ideal cubic
CaMnO3 is also found to be a G-type antiferromagnetically
ordered insulator.2,22 In a more recent study of SrMnO3 a
finite contribution to the electronic density of state in a one-
spin direction at the Fermi energy was obtained, hence sug-
gesting half-metallic behavior.23 The magnetic ordering con-
sidered in this study was, however, not clearly stated. The

features of the band structure appear to be those of a ferro-
magnetic state.

The present paper focuses on the electronic contributions
to the phase stability of the two SrMnO3 polymorphs through
first-principles density functional theory !DFT". Comple-
mentary high-pressure powder x-ray diffraction data for hex-
agonal SrMnO3 are also reported. These data are used to
derive an experimental value for the bulk modulus which
again is used to test the quality of the band-structure calcu-
lations. A subsequent paper will report on the lattice dynam-
ics !experiments and calculations" and hence the vibrational
entropy contribution to the phase stability.

II. CRYSTAL AND MAGNETIC STRUCTURES

The crystallographic structures of the two SrMnO3 poly-
morphs considered are given in Fig. 1. The representation of
the ideal cubic perovskite structure of SrMnO3 !space group

FIG. 1. The polyhedron representations of !a" the ideal cubic
perovskite and !b" the four-layer hexagonal perovskite structures.
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With SEET(GW/ED) we see gap opening1. We want to investigate whether SEET (GW/CCSD) 

Is also successful in that!!

Two different computational setups will be used:

1) Mn: 

2) Mn: ; Mn: ; O: ; O: 

t2g
t2g eg pπ pσ

Cubic perovskite in paramagnetic phase

T= 1053 k

1.C-N Yeh, S. Iskakov, D. Zgid, E. Gull, PRB 103 (19), 195149

Experiment predicts a gap of 1.0-2.3 ev
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difference in TN is probably caused by differences in the
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Both the hexagonal and the cubic polymorphs are semi-
conductors. The electronic properties are, however, largely
affected by stoichiometry. Hexagonal SrMnO3 when heated
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oxides. The 3dn ground state of the undoped compound be-
comes dn and 3dn−1 for early transition metals !U"!" and
3dnL! for late transition metals !U#!", where L! denotes a
ligand hole. For U=! the states will be of heavily mixed
character. Manganese oxides being in the intermediate region
of the Zaanen, Sawatzky, Allen phase diagram15 represent
less clear-cut cases.16 From spectroscopic measurements Ab-
bate et al.17 and Chainani et al.18 suggested heavily mixed
ground states for La1−xSrxMnO3. On the other hand, Saitoh et
al.19 and Zampieri et al.20 proposed a band gap that to a large
extent is of the charge-transfer type for SrMnO3 and
CaMnO3.

First-principles band-structure calculations suggest that
cubic G-type antiferromagnetically ordered SrMnO3 is an
insulator !at 0 K" with a small band gap.21 The nature of the
band gap was not discussed, but the results agree with the
electronic structure of the cubic and orthorhombic modifica-
tions of the related compound CaMnO3. The ideal cubic
CaMnO3 is also found to be a G-type antiferromagnetically
ordered insulator.2,22 In a more recent study of SrMnO3 a
finite contribution to the electronic density of state in a one-
spin direction at the Fermi energy was obtained, hence sug-
gesting half-metallic behavior.23 The magnetic ordering con-
sidered in this study was, however, not clearly stated. The

features of the band structure appear to be those of a ferro-
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The present paper focuses on the electronic contributions
to the phase stability of the two SrMnO3 polymorphs through
first-principles density functional theory !DFT". Comple-
mentary high-pressure powder x-ray diffraction data for hex-
agonal SrMnO3 are also reported. These data are used to
derive an experimental value for the bulk modulus which
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With SEET(GW/ED) we see gap opening1. We want to investigate whether SEET (GW/CCSD)  
Is also successful in that!!

Two different computational setups will be used:
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DOS comparison
After carrying out both inner and outer loop self-consistency

Setup A: Mn:t2g
     corresponds to scGW results

Yeh, Shee, Zgid Phys. Rev. B 2021,103,155158



DOS comparison (Mn: t2g + eg)

Spurious  peak near  eg EF      corresponds to scGW results

We have to improve the GFCC solver.



GFCCSDT solver and approximation
Theory

|Ψgr⟩ = e ̂T |Φ0⟩; ̂T = ̂T1 + ̂T2 + ̂T3

S. Hirata, M. Nooijen, and R. J. Bartlett Chem. Phys. Lett. 326, 255 (2000)

Source: Q-Chem manual

The GFCCSDT(2,3) approximation is free of disconnected diagrams (B. Peng and K. Kowalski) for (N+1)/(N-1) cases. 

Full GFCCSDT scales as  . We are looking for a slightly cheaper variant. N8
GFCCSD poles GFCCSDT(2,3) poles

GFCCSDT(2,3) variant scales as N7

X

Gij = ∑
k

X†
ikXki

ω + EG − Ek + iη
Xik = ⟨GS |c†

i |Ek⟩ More complete projection of (N-1) states..

|ΨN+1/N−1⟩ = e ̂TR̂N+1/N−1 |Φ0⟩

R̂ = ̂R1 + ̂R2 + ̂R3



O:  impuritypπ Mn:  impurityeg

No causality breakdown anymore!!

Self-energy comparison :  and Mn : eg O : pπ

*Shee, Yeh, Peng, Kowalski, Zgid, (manuscript)



Self-consistency test with MnO:

SEET(GW/CCSDT(2,3))

Mn : t2g, eg; O : pπ + pσ

We have chosen AFM 
Phase of MnO for this 
investigation.


-MnO doesn’t require 
the charge self-
consistency loop.


-GFCCSD produces a 
spurious peak at EF 
when O:p is the 
impurity. 



Final Remarks

1. Lanczos based CCGF is numerically efficient and stable.

2. Error in particle sector search may lead to divergence in SEET

3. With increasing size of the impurity accuracy deteriorates.

4. GFCCSDT provides significant improvement over GFCCSD.  


